time

DIFFERENTIATION

1	Differentiate with resp	pect to x			
	a 4 <i>y</i>	b y^3	c sin $2y$	d $3e^{y^2}$	
2	Find $\frac{dy}{dx}$ in terms of x and y in each case.				
	a $x^2 + y^2 = 2$	b $2x - y + y^2$	$c^2 = 0$ c	$y^4 = x^2 - 6x + 2$	
	d $x^2 + y^2 + 3x - 4y =$	9 e $x^2 - 2y^2 +$	$x + 3y - 4 = 0 \qquad \mathbf{f}$	$\sin x + \cos y = 0$	
	$\mathbf{g} 2e^{3x} + e^{-2y} + 7 = 0$	h $\tan x + \cos x$	sec $2y = 1$ i	$\ln\left(x-2\right) = \ln\left(2y+1\right)$	
3	Differentiate with respect to <i>x</i>				
	a <i>xy</i>	b x^2y^3	c $\sin x \tan y$	d $(x-2y)^3$	
4	Find $\frac{dy}{dx}$ in terms of x and y in each case.				
	a $x^2y = 2$	b $x^2 + 3xy -$	$y^2 = 0 \qquad \mathbf{c}$	$4x^2 - 2xy + 3y^2 = 8$	
		0 e $y = (x + y)$		$xe^{y} - y = 5$	
	$\mathbf{g} 2xy^2 - x^3y = 0$	h $y^2 + x \ln y$	= 3 i	$x\sin y + x^2\cos y = 1$	
5	Find an equation for the tangent to each curve at the given point on the curve.				
	a $x^2 + y^2 - 3y - 2 = 0$, (2, 1)	b $2x^2 - xy + y^2 = 28$, (3, 5)		
	$\mathbf{c} 4\sin y - \sec x = 0,$	$(\frac{\pi}{3},\frac{\pi}{6})$	d $2 \tan x \cos y =$	$1, \qquad (\frac{\pi}{4}, \frac{\pi}{3})$	
6	A curve has the equation $x^2 + 2y^2 - x + 4y = 6$.				
	a Show that $\frac{dy}{dx} = \frac{1-2x}{4(y+1)}$.				
	b Find an equation for the normal to the curve at the point $(1, -3)$.				
7	A curve has the equation $x^2 + 4xy - 3y^2 = 36$.				
	a Find an equation for the tangent to the curve at the point $P(4, 2)$.				
	Given that the tangent to the curve at the point Q on the curve is parallel to the tangent at P ,				
	b find the coordinates of Q .				
8	A curve has the equation $y = a^x$, where <i>a</i> is a positive constant. By first taking logarithms, find an expression for $\frac{dy}{dx}$ in terms of <i>a</i> and <i>x</i> .				
9	Differentiate with respect to x				
	a 3^x	b 6^{2x}	c 5^{1-x}	d 2^{x^3}	
10	A biological culture is growing exponentially such that the number of bacteria present, N , at t minutes is given by				
	$N = 800(1.04)^t$.				

Find the rate at which the number of bacteria is increasing when there are 4000 bacteria present.